首页> 外文OA文献 >Efficient Hand Articulations Tracking using Adaptive Hand Model and Depth map
【2h】

Efficient Hand Articulations Tracking using Adaptive Hand Model and Depth map

机译:使用自适应手模型和自适应手模型进行高效手部关节跟踪   深度图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Real-time hand articulations tracking is important for many applications suchas interacting with virtual / augmented reality devices or tablets. However,most of existing algorithms highly rely on expensive and high power-consumingGPUs to achieve real-time processing. Consequently, these systems areinappropriate for mobile and wearable devices. In this paper, we propose anefficient hand tracking system which does not require high performance GPUs. Inour system, we track hand articulations by minimizing discrepancy between depthmap from sensor and computer-generated hand model. We also initialize hand poseat each frame using finger detection and classification. Our contributions are:(a) propose adaptive hand model to consider different hand shapes of userswithout generating personalized hand model; (b) improve the highly efficientframe initialization for robust tracking and automatic initialization; (c)propose hierarchical random sampling of pixels from each depth map to improvetracking accuracy while limiting required computations. To the best of ourknowledge, it is the first system that achieves both automatic hand modeladjustment and real-time tracking without using GPUs.
机译:实时手部关节运动跟踪对于许多应用程序非常重要,例如与虚拟/增强现实设备或平板电脑进行交互。但是,大多数现有算法高度依赖昂贵且耗电大的GPU来实现实时处理。因此,这些系统不适用于移动和可穿戴设备。在本文中,我们提出了一种不需要高性能GPU的高效手部跟踪系统。在我们的系统中,我们通过最大程度地减少传感器的深度图与计算机生成的手模型之间的差异来跟踪手的关节运动。我们还使用手指检测和分类在每帧初始化手姿势。我们的贡献是:(a)提出自适应手模型以考虑用户的不同手形而无需生成个性化手模型; (b)改进高效的帧初始化,以实现强大的跟踪和自动初始化; (c)从每个深度图中提出像素的分层随机采样,以提高跟踪精度,同时限制所需的计算。据我们所知,这是第一个无需使用GPU即可实现自动手模型调整和实时跟踪的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号